Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 525
1.
Nat Commun ; 15(1): 3804, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714648

Messenger RNA (mRNA) therapeutics delivered via lipid nanoparticles hold the potential to treat metabolic diseases caused by protein deficiency, including propionic acidemia (PA), methylmalonic acidemia (MMA), and phenylketonuria (PKU). Herein we report results from multiple independent preclinical studies of mRNA-3927 (an investigational treatment for PA), mRNA-3705 (an investigational treatment for MMA), and mRNA-3210 (an investigational treatment for PKU) in murine models of each disease. All 3 mRNA therapeutics exhibited pharmacokinetic/pharmacodynamic (PK/PD) responses in their respective murine model by driving mRNA, protein, and/or protein activity responses, as well as by decreasing levels of the relevant biomarker(s) when compared to control-treated animals. These preclinical data were then used to develop translational PK/PD models, which were scaled allometrically to humans to predict starting doses for first-in-human clinical studies for each disease. The predicted first-in-human doses for mRNA-3927, mRNA-3705, and mRNA-3210 were determined to be 0.3, 0.1, and 0.4 mg/kg, respectively.


Amino Acid Metabolism, Inborn Errors , Disease Models, Animal , Phenylketonurias , Propionic Acidemia , RNA, Messenger , Propionic Acidemia/genetics , Propionic Acidemia/therapy , Propionic Acidemia/drug therapy , Animals , Phenylketonurias/genetics , Phenylketonurias/drug therapy , Phenylketonurias/therapy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/drug therapy , Mice , Humans , Male , Female , Nanoparticles/chemistry , Mice, Inbred C57BL , Liposomes
2.
Am J Clin Nutr ; 119(4): 908-916, 2024 Apr.
Article En | MEDLINE | ID: mdl-38569786

BACKGROUND: Phenylketonuria (PKU) is an autosomal recessive metabolic disorder characterized by increased phenylalanine (Phe) concentrations in the blood and brain. Despite wide agreement on treatment during childhood, recommendations for adults are still controversial. OBJECTIVE: To assess the impact of a 4-week increase in Phe intake (simulating normal dietary Phe consumption) on cognition, mood, and depression in early-treated adults with PKU in a double-blind, randomized controlled trial (RCT). METHODS: In a single-site crossover trial, 30 adult patients with classical PKU diagnosed at birth were recruited. All patients underwent a 4-week period of oral Phe administration (1500-3000 mg Phe/d) and a 4-week placebo period in a randomly assigned order with age, sex, and place of usual medical care as stratification factors. Analyses were based on the intention-to-treat (ITT) and per protocol (PP) approach to claim noninferiority (noninferiority margin -4%), with working memory accuracy as the primary endpoint and additional cognitive domains, mood, and depression as secondary endpoints. RESULTS: For the primary endpoint, a 4-week increase of Phe intake was noninferior to placebo with respect to working memory accuracy in both the ITT [point estimate 0.49; lower limit 95% confidence interval (CI): -1.99] and the PP analysis (point estimate -1.22; lower limit 95% CI: -2.60). Secondary outcomes (working memory reaction time, manual dexterity, mood, and depression) did not significantly differ between the Phe and placebo period, except for sustained attention (point estimate 31.0; lower limit 95% CI: 9.0). Adverse events were more frequent during the Phe than during the placebo period (95% CI: 1.03, 2.28, P = 0.037). CONCLUSIONS: In early-treated adult patients with PKU, a 4-week high Phe intake was noninferior to continuing Phe restriction regarding working memory accuracy, and secondary outcomes did not differ except for sustained attention. Longer-term RCTs are required to determine whether low Phe levels need to be maintained throughout different periods of adulthood. This trial was registered at the clinicaltrials.gov as NCT03788343.


Phenylketonurias , Adult , Humans , Brain/metabolism , Cognition , Diet , Phenylalanine , Phenylketonurias/drug therapy , Phenylketonurias/metabolism , Male , Female
3.
Article En | MEDLINE | ID: mdl-38673342

BACKGROUND: We assessed the relationship between the cognitive development of children and adolescents with phenylketonuria (PKU) and fluctuations in peripheral phenylalanine (Phe) levels. METHODS: We examined the neurocognitive performance of 33 children and adolescents with early treated PKU, of whom 18 were treated with sapropterin dihydrochloride, and 15 were on a classic diet. For 26 weeks, patients were assessed weekly for their blood phenylalanine (Phe) levels. Phe levels were analyzed for fluctuations indicated by the individual standard deviation. Fluctuations were compared to the standard deviation of 26 Phe level measurements before the study interval. We also assessed the concurrent IQ of the patients. This was repeated at one-, two-, and seven-year intervals. RESULTS: Full-scale IQ in patients treated with a classic diet did not change within the follow-up. In patients treated with Sapropterin dihydrochloride, however, there was a considerable gain in full-scale IQ. This was particularly true if blood Phe fluctuations increased in patients of this treatment group. CONCLUSIONS: Sapropterin dihydrochloride enhances Phe tolerance in patients with PKU. Increasing blood Phe fluctuations following enhanced Phe tolerance may indicate that the treatment not only allows patients to relax their Phe-restricted diet but also may support cognitive development in patients.


Biopterins , Biopterins/analogs & derivatives , Cognition , Phenylalanine , Phenylketonurias , Humans , Phenylketonurias/blood , Phenylketonurias/drug therapy , Phenylalanine/blood , Adolescent , Child , Cognition/drug effects , Male , Female , Biopterins/blood , Child, Preschool , Child Development/drug effects
4.
Biophys Chem ; 308: 107215, 2024 May.
Article En | MEDLINE | ID: mdl-38432113

Phenylketonuria is characterized by the accumulation of phenylalanine, resulting in severe cognitive and neurological disorders if not treated by a remarkably strict diet. There are two approved drugs today, yet both provide only a partial solution. We have previously demonstrated the formation of amyloid-like toxic assemblies by aggregation of phenylalanine, suggesting a new therapeutic target to be further pursued. Moreover, we showed that compounds that halt the formation of these assemblies also prevent their resulting toxicity. Here, we performed high-throughput screening, searching for compounds with inhibitory effects on phenylalanine aggregation. Morin hydrate, one of the most promising hits revealed during the screen, was chosen to be tested in vivo using a phenylketonuria mouse model. Morin hydrate significantly improved cognitive and motor function with a reduction in the number of phenylalanine brain deposits. Moreover, while phenylalanine levels remained high, we observed a recovery in dopaminergic, adrenergic, and neuronal markers. To conclude, the ability of Morin hydrate to halt phenylalanine aggregation without reducing phenylalanine levels implies the toxic role of the phenylalanine assemblies in phenylketonuria and opens new avenues for disease-modifying treatment.


Phenylalanine , Phenylketonurias , Mice , Animals , Phenylalanine/therapeutic use , Prospective Studies , Phenylketonurias/drug therapy , Amyloid/metabolism , Brain
5.
BMC Med Genomics ; 17(1): 76, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38515136

BACKGROUND: PKU is an autosomal recessive hereditary inborn error of metabolism caused by a lack of phenylalanine hydroxylase enzyme activity. Pegvaliase (PALYNZIQ®) treatment has been approved to reduce blood Phe concentrations in adult phenylketonuria patients with uncontrolled blood Phe concentrations greater than 600 micromol/L on current management. However, data regarding individuals under the age of 16 is still unavailable. CASE REPORT: We report a 12-year-old Saudi girl who underwent pegvaliase therapy and was closely monitored for one year. Remarkably, a positive therapeutic response became apparent six months after commencing pegvaliase treatment. Phenylalanine (Phe) levels showed significant improvement, stabilising within the < 5 to 14 µmol/L range on a regular diet without any restriction. At her current age of 12, the patient maintains an unrestricted dietary regimen, consuming a diverse selection of foods, including poultry, meat, and protein sources, all while consistently maintaining normal Phe levels with no change in mental status after treatment. The parents gave their written, informed consent in allowing the research study to be carried out and clinical data to be published. CONCLUSIONS: This report addresses the potential broader applications of Pegvaliase in children, as well as its safety and tolerability in this age group. However, larger sample sizes and robust methodologies are required to validate such findings.


Phenylalanine , Phenylketonurias , Child , Female , Humans , Food , Phenylalanine/therapeutic use , Phenylalanine Ammonia-Lyase/therapeutic use , Phenylketonurias/drug therapy , Recombinant Proteins
6.
Mol Genet Metab ; 142(1): 108151, 2024 May.
Article En | MEDLINE | ID: mdl-38522180

OBJECTIVE: The aim of this study is to present a series of case studies on the real-life use of pegvaliase in Italy in managing patients affected by phenylketonuria (PKU) and provide practical insight and support to healthcare professionals currently approaching and facing this novel enzyme substitution therapy. METHODS: A panel of 11 PKU experts from seven leading Italian treatment centers attended online virtual meetings with the aim of reviewing their clinical and practical experiences with pegvaliase based on occurred cases. In selecting the cases, specific consideration was given to the nationwide representation of the centers involved and to the number of patients with PKU managed. Cases were thoroughly reviewed, with comprehensive discussions enabling the identification of key take-home messages regarding pegvaliase therapy. RESULTS: The panel discussed 18 cases, 11 males and 7 females (age range 17-43 years). At the last follow-up (up to 111 weeks after pegvaliase initiation), 11 out of 18 patients (61%) reached Phe levels below 600 µmol/l. Outcomes varied significantly across cases. All cases underscore the potential of pegvaliase in reducing Phe levels, enhancing the quality of life, and promoting social skills and independence. Additionally, the cases highlight the challenges associated with pegvaliase therapy, including managing adverse events and ensuring patient motivation and adherence. CONCLUSION: This is the first report about the Italian experience of managing patients affected by PKU with pegvaliase. Given the limited real-world data on the use of pegvaliase in PKU management, this case series offers valuable insights into the practical implementation and management of pegvaliase therapy in this Country. Continued research and data collection will be crucial to confirm and progress with this treatment. Despite potential challenges, pegvaliase therapy represents a substantial promise in managing PKU in Italy. Patient education, personalized treatment approaches, and careful monitoring are important to ensure optimal patient outcomes.


Phenylalanine Ammonia-Lyase , Phenylalanine , Phenylketonurias , Humans , Phenylketonurias/drug therapy , Male , Female , Adolescent , Adult , Young Adult , Italy , Phenylalanine Ammonia-Lyase/therapeutic use , Phenylalanine Ammonia-Lyase/adverse effects , Enzyme Replacement Therapy , Recombinant Proteins/therapeutic use , Recombinant Proteins/administration & dosage , Quality of Life , Treatment Outcome
7.
J Inherit Metab Dis ; 47(3): 494-508, 2024 May.
Article En | MEDLINE | ID: mdl-38196161

Proteostatic regulation of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis, is crucial for maintaining proper brain neurotransmitter homeostasis. Variants of the TH gene are associated with tyrosine hydroxylase deficiency (THD), a rare disorder with a wide phenotypic spectrum and variable response to treatment, which affects protein stability and may lead to accelerated degradation, loss of TH function and catecholamine deficiency. In this study, we investigated the effects of the TH cofactor tetrahydrobiopterin (BH4) on the stability of TH in isolated protein and in DAn- differentiated from iPSCs from a human healthy subject, as well as from THD patients with the R233H variant in homozygosity (THDA) and R328W and T399M variants in heterozygosity (THDB). We report an increase in TH and dopamine levels, and an increase in the number of TH+ cells in control and THDA cells. To translate this in vitro effect, we treated with BH4 a knock-in THD mouse model with Th variant corresponding to R233H in patients. Importantly, treatment with BH4 significantly improved motor function in these mice, as demonstrated by increased latency on the rotarod test and improved horizontal activity (catalepsy). In conclusion, our study demonstrates the stabilizing effects of BH4 on TH protein levels and function in THD neurons and mice, rescuing disease phenotypes and improving motor outcomes. These findings highlight the therapeutic potential of BH4 as a treatment option for THDA patients with specific variants and provide insights into the modulation of TH stability and its implications for THD management.


Biopterins , Disease Models, Animal , Neurons , Phenotype , Tyrosine 3-Monooxygenase , Biopterins/analogs & derivatives , Animals , Humans , Tyrosine 3-Monooxygenase/metabolism , Mice , Neurons/metabolism , Dopamine/metabolism , Male , Phenylketonurias/drug therapy , Phenylketonurias/genetics , Phenylketonurias/metabolism , Female , Gene Knock-In Techniques
8.
J Atten Disord ; 28(2): 161-167, 2024 Jan.
Article En | MEDLINE | ID: mdl-37942650

Tetrahydrobiopterin (BH4) is a critical cofactor in a variety of metabolic pathways that have been linked to ADHD. There have been no previous studies utilizing BH4 as a supplement for ADHD. BH4 has been approved as a treatment for phenylketonuria (PKU). Individuals with PKU and ADHD appear to have low DA levels in common, suggesting that the hypodopaminergic state seen in both illnesses could be a relationship between the two. Clinical research involving supplementation of BH4 has shown low occurrence of adverse. In experiments, BH4 has also been found to have good blood-brain barrier permeability. BH4 also has the ability in scavenging ROS activity, which is an implication of stress and is seen in ADHD. BH4's significance in ADHD is reviewed in this paper because of its involvement in numerous neurodevelopmental metabolic pathways, and we anticipate that exogenous BH4 can be used to treat ADHD.


Attention Deficit Disorder with Hyperactivity , Phenylketonurias , Humans , Attention Deficit Disorder with Hyperactivity/drug therapy , Phenylketonurias/drug therapy , Phenylketonurias/diagnosis , Biopterins/therapeutic use , Neurotransmitter Agents/therapeutic use
9.
Nutr Health ; 30(1): 35-38, 2024 Mar.
Article En | MEDLINE | ID: mdl-37365866

Phenylalanine (Phe)-free protein substitutes are used within the management of phenylketonuria (PKU). However, adherence to the Phe-restricted diet is often challenging. A child (age 4.5 years) with PKU rejected the Phe-free protein substitutes used within her therapeutic diet, causing stress for herself and family at mealtimes. Switching to a new Phe-free protein substitute that can be mixed into other foods [PKU GOLIKE® (3-16)] provided an alternative strategy that was acceptable to the child. Good control of blood Phe was maintained. Newer Phe-free protein substitutes may provide a strategy for maintaining the therapeutic diet for PKU where the patient has difficulty doing so on standard substitutes. Here, the use of a Phe-free protein substitute with improved palatability and ease of use supported maintenance of the Phe-restricted diet for a child with PKU who struggled to maintain the diet on standard substitutes.


Phenylalanine , Phenylketonurias , Child , Female , Humans , Child, Preschool , Phenylalanine/therapeutic use , Diet , Phenylketonurias/drug therapy
10.
Nephron ; 148(4): 195-203, 2024.
Article En | MEDLINE | ID: mdl-37757776

INTRODUCTION: In phenylketonuria (PKU), toxic phenylalanine (Phe) can harm other organs beyond the brain. Furthermore, the lifelong therapy of PKU consists of consumption of increased amounts of amino-acid mixture that provoke hyperfiltration in the glomeruli. Therefore, the adherence to therapy in PKU might influence the long-term kidney function in PKU patients. METHODS: Data from 41 adult, early treated PKU patients were analyzed in this 10-year, retrospective, monocentric study. Two subgroups were created according to their therapy adherence: one with long-term blood Phe levels in the therapeutic range (<600 µmol/L), and one with suboptimal blood Phe levels. Renal function and metabolic parameters were collected over 10 years. Kidney function parameters were compared between the two groups and associations between blood Phe levels and kidney function were tested. RESULTS: After 10 years, serum creatinine levels (p = 0.369) and estimated glomerular filtration rate (eGFR) (p = 0.723) did not change significantly from baseline in the good therapeutic group. The suboptimal therapeutic group's eGFR decreased in the same period (from 110.4 ± 14 mL/min/1.73 m2 to 94.2 ± 16 mL/min/1.73 m2, p = 0.017). At 10 years, the suboptimal therapeutic group had an increased serum creatinine level (81 ± 14.4 µmol/L vs. 71.5 ± 13 µmol/L, p = 0.038), and a decreased eGFR (94.2 ± 16 mL/min/1.73 m2 vs. 103.3 ± 13 mL/min/1.73 m2p = 0.031) compared to the good adhering group. Significant negative correlation between Phe levels and eGFR (r = -0.41, p = 0.008) was observed. CONCLUSION: Long-term suboptimal therapy adherence in PKU patients with high blood Phe levels may lead to deterioration in kidney function.


Phenylketonurias , Adult , Humans , Retrospective Studies , Creatinine , Phenylketonurias/drug therapy , Brain , Phenylalanine/therapeutic use , Kidney
11.
Drug Deliv Transl Res ; 14(1): 191-207, 2024 Jan.
Article En | MEDLINE | ID: mdl-37555905

Phenylketonuria (PKU) is a rare inherited metabolic disease characterized by phenylalanine hydroxylase enzyme deficiency. In PKU patients, coenzyme Q10 (CoQ10) levels were found low. Therefore, we focused on the modification of CoQ10 to load the micelles and increase entry of micelles into the cell and mitochondria, and it is taking a part in ATP turnover. Micelles had produced by comparing two different production methods (thin-film layer and direct-dissolution), and characterization studies were performed (zeta potential, size, and encapsulation efficiency). Then, L-arginine (LARG) and poly-arginine (PARG) were incorporated with the micelles for subsequential release and PKU cell studies. The effects of these components on intracellular uptake and their use in the cellular cycle were analyzed by ELISA, Western blot, membrane potential measurement, and flow cytometry methods. In addition, both effects of LARG and PARG micelles on pharmacokinetics at the cellular level and their cell binding rate were determined. The thin-film method was found superior in micelle preparation. PARG/LARG-modified micelles showed sustained release. In the cellular and mitochondrial uptake of CoQ10, CoQ10-micelle + PARG > CoQ10-micelle + LARG > CoQ10-micelle > CoQ10 was found. This increased localization caused lowering of oxygen consumption rates, but maintaining mitochondrial membrane potential. The study results had showed that besides micelle formulation, PARG and LARG are effective in cellular and mitochondrial targeting.


Micelles , Phenylketonurias , Humans , Ubiquinone/chemistry , Mitochondria/metabolism , Phenylketonurias/drug therapy , Phenylketonurias/metabolism
12.
Mol Genet Metab ; 141(1): 107737, 2024 Jan.
Article En | MEDLINE | ID: mdl-38043481

BACKGROUND: Pegvaliase, an enzyme substitution therapy, is a treatment option for phenylketonuria (PKU). Due to the neuropathophysiology and disease burden of PKU, individuals can experience baseline anxiety unrelated to pegvaliase therapy. In addition, there are aspects of pegvaliase therapy that may be anxiety-inducing for those considering or receiving treatment. The aim of this manuscript is to present best practice recommendations for the identification and management of anxiety symptoms that can occur along the pegvaliase journey. METHODS: A modified Delphi approach was used to seek consensus among a multidisciplinary panel of experts. To this end, an in-person meeting was held that was preceded by a medical specialist- and patient-specific survey to develop preliminary recommendations on ways to address anxiety along the pegvaliase journey. After the meeting, an additional survey was conducted to rank the proposed solutions and mitigation strategies from which a set of recommendations was developed. All recommendations were voted on with the aim of consensus generation, defined as achieving ≥75% agreement among experts. RESULTS: The panel reached consensus on a total of 28 best practice recommendations for the management of anxiety during the pre-treatment, induction and titration, early maintenance (pre-efficacy), and late maintenance (post-efficacy) stages. The recommendations offer strategies to identify and address the most common causes of pegvaliase-related anxiety, including self-injection, side effects, the titration schedule, prescribed dietary changes, and variable time to efficacy. Overall, managing anxiety in those considering or receiving pegvaliase involves patient-centered communication, shared decision-making, and personalized treatment plans. CONCLUSIONS: The best practice recommendations described herein can guide healthcare providers in proactively addressing anxiety during the different stages of pegvaliase treatment, and support providers with initiating and managing pegvaliase in individuals who may experience baseline and treatment-related anxiety.


Phenylalanine , Phenylketonurias , Humans , Phenylalanine Ammonia-Lyase/therapeutic use , Phenylketonurias/drug therapy , Anxiety/therapy , Recombinant Proteins
13.
Clin Pharmacol Drug Dev ; 13(5): 506-516, 2024 May.
Article En | MEDLINE | ID: mdl-38156759

Sepiapterin is an orally administered drug in development for the treatment of phenylketonuria, an inborn error of metabolism characterized by the deficiency of the phenylalanine-metabolizing enzyme phenylalanine hydroxylase. This study characterized the pharmacokinetics, safety, and tolerability of 2 clinical sepiapterin formulations (Phase 1/2, Phase 3) and the effects of food on the pharmacokinetics of the Phase 3 formulation in healthy participants. In Part A, 18 participants were randomized to one of 2 treatment sequences, each with 4 dosing periods comprising a single dose (20 or 60 mg/kg) of the Phase 1/2 or the Phase 3 formulation with a low-fat diet. In Part B, 14 participants were randomized to one of 2 sequences, each comprising 4 dosing periods of a single dose (20 or 60 mg/kg) of the Phase 3 formulation under fed (high-fat) or fasted conditions. Following oral administration, sepiapterin was quickly absorbed and rapidly and extensively converted to tetrahydrobiopterin (BH4). BH4 was the major circulating active moiety. Under low-fat conditions, the Phase 3 formulation was bioequivalent to the Phase 1/2 formulation at 20 mg/kg, while slightly lower BH4 exposure (approximately 0.81×) for the Phase 3 formulation was observed at 60 mg/kg. BH4 exposure increased to approximately 1.7× under the low-fat condition and approximately 2.8× under the high-fat condition at a dose of either 20 or 60 mg/kg for the Phase 3 formulation, compared with the fasted condition. Both sepiapterin formulations were well tolerated, with no serious or severe adverse events reported. All treatment-emergent adverse events were mild or moderate in severity.


Biological Availability , Biopterins , Biopterins/analogs & derivatives , Cross-Over Studies , Food-Drug Interactions , Healthy Volunteers , Pterins , Humans , Male , Adult , Administration, Oral , Female , Pterins/administration & dosage , Pterins/pharmacokinetics , Pterins/adverse effects , Young Adult , Biopterins/administration & dosage , Biopterins/pharmacokinetics , Biopterins/adverse effects , Middle Aged , Phenylketonurias/drug therapy , Therapeutic Equivalency , Fasting , Adolescent
14.
Curr Opin Clin Nutr Metab Care ; 27(1): 31-39, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38085662

PURPOSE OF REVIEW: Casein glycomacropeptide (CGMP) is a milk-derived bioactive sialyated phosphorylated peptide with distinctive nutritional and nutraceutical properties, produced during the cheese making process. It comprises 20-25% of total protein in whey products. CGMP is low in phenylalanine (Phe) and provides an alternative to Phe-free amino acids as a source of protein equivalent for patients with phenylketonuria (PKU). The amino acid sequence of CGMP is adapted by adding the amino acids histidine, leucine, tyrosine, arginine and tryptophan to enable its suitability in PKU. CGMP has potential antibacterial, antioxidative, prebiotic, remineralizing, digestion /metabolism and immune-modulating properties. The aim of this review is to assess the evidence for the role of CGMP in the management of PKU. RECENT FINDINGS: In PKU, there is no agreement concerning the amino acid composition of CGMP protein substitutes and consequently the nutritional composition varies between products. Although there is evidence in patients or animal models that CGMP has possible beneficial effects on gut microbiota and bone health, the results are inconclusive. Data on kinetic advantage is limited. Most studies report an increase in blood Phe levels with CGMP. Appropriate adaptations and reduction of dietary Phe intake should be made to compensate for the residual Phe content of CGMP, particularly in children. Data from short term studies indicate improved palatability of CGMP when compared to Phe-free amino acids. SUMMARY: In PKU, CGMP with supplementary amino acids, offers a safe low Phe nitrogen source. Current scientific evidence is unconvincing about its bioactive advantage in PKU. Further longitudinal research is necessary.


Caseins , Phenylketonurias , Child , Animals , Humans , Dietary Supplements , Amino Acids , Phenylketonurias/drug therapy , Phenylketonurias/metabolism , Phenylalanine/metabolism
15.
Mol Genet Metab ; 140(3): 107706, 2023 11.
Article En | MEDLINE | ID: mdl-37837865

BACKGROUND: Phenylalanine (Phe)-restricted diet is associated with lower quality of life for patients with phenylketonuria (PKU), and a concern for caregivers of recently-diagnosed infants. Sapropterin is an oral drug used as an alternative or adjunct to dietary treatment. We have observed that some of the young infants initially managed successfully with sapropterin monotherapy have required dietary treatment in long-term follow-up. We aimed to determine the baseline factors associated with future initiation of dietary treatment in these patients. METHODS: Data were obtained retrospectively from the medical records of 80 PKU patients started on sapropterin monotherapy before 3 months of age between 2011 and 2021. RESULTS: The patients were followed for a median of 3.9 years (Q1-Q3: 2.5-5.75 years). Sapropterin was tapered down and discontinued in 5 patients (6.3%) as their Phe levels remained below 360 µmol/L without treatment. Sapropterin monotherapy was sufficient in 62 patients (77.5%), while 13 (16.2%) required dietary treatment. Phe and tyrosine (Tyr) levels, and Phe:Tyr ratios differed significantly among the patients maintained on sapropterin monotherapy and those started on dietary treatment, but the Phe:Tyr ratio at diagnosis was the most important independent baseline variable (OR: 1.61, 95% CI: 1.15-2.27, p = 0.006), with Phe:Tyr ratio at diagnosis >5.25 associated with dietary treatment (sensitivity: 90.0%, specificity: 81.8%). Genotypic phenotype value (GPV), unavailable at baseline, was also associated with dietary treatment (median GPV 9.2 vs. 3.8, p = 0.006), but some genotypes were not specific to the final treatment modality. DISCUSSION: We propose that the Phe:Tyr ratio at diagnosis is an important indicator to predict dietary requirement in young infants initially managed with sapropterin monotherapy.


Phenylalanine Hydroxylase , Phenylketonurias , Humans , Infant , Retrospective Studies , Quality of Life , Phenylalanine , Phenylketonurias/drug therapy , Phenylketonurias/genetics , Diet , Biopterins , Phenylalanine Hydroxylase/genetics
16.
Arch Biochem Biophys ; 749: 109792, 2023 11.
Article En | MEDLINE | ID: mdl-37863349

Phenylketonuria (PKU) is the most common inherited metabolic disorders caused by severe deficiency or absence of phenylalanine hydroxylase activity that converts phenylalanine (Phe) to tyrosine. PKU patients were treated with a Phe restricted diet supplemented with a special formula containing l-carnitine (L-car), well-known antioxidant compound. The lack of treatment can cause neurological and cognitive impairment, as severe mental retardation, neuronal cell loss and synaptic density reduction. Although Phe has been widely demonstrated to be involved in PKU neurotoxicity, the mechanisms responsible for the CNS injury are still not fully known. In this work, we evaluated markers of neurodegeneration, namely BDNF (brain-derived neurotrophic factor), PAI-1 total (Plasminogen activator inhibitor-1 total), Cathepsin D, PDGF AB/BB (platelet-derived growth factor), and NCAM (neuronal adhesion molecule) in plasma of PKU patients at early and late diagnosis and under treatment. We found decreased Phe levels and increased L-car concentrations in PKU patients treated with L-car compared to the other groups, indicating that the proposed treatment was effective. Furthermore, we found increased BDNF levels in the patients under treatment compared to patients at early diagnosis, and a positive correlation between BDNF and L-car and a negative correlation between BDNF and Phe. Our results may indicate that in PKU patients treated with L-car there is an attempt to adjust neuronal plasticity and recover the damage suffered, reflecting a compensatory response to brain injury.


Carnitine , Phenylketonurias , Humans , Brain-Derived Neurotrophic Factor , Phenylketonurias/drug therapy , Dietary Supplements , Antioxidants , Phenylalanine , Becaplermin
17.
Nat Metab ; 5(10): 1685-1690, 2023 Oct.
Article En | MEDLINE | ID: mdl-37770764

Despite available treatment options, many patients with phenylketonuria (PKU) cannot achieve target plasma phenylalanine (Phe) levels1. We previously modified Escherichia coli Nissle 1917 to metabolize Phe in the gut after oral administration (SYNB1618) and designed a second strain (SYNB1934) with enhanced activity of phenylalanine ammonia lyase2,3. In a 14-day open-label dose-escalation study (Synpheny-1, NCT04534842 ), we test a primary endpoint of change from baseline in labeled Phe (D5-Phe AUC0-24; D5-Phe area under the curve (AUC) over 24 hours after D5-Phe administration) in plasma after D5-Phe challenge in adult participants with screening Phe of greater than 600 µM. Secondary endpoints were the change from baseline in fasting plasma Phe and the incidence of treatment-emergent adverse events. A total of 20 participants (ten male and ten female) were enrolled and 15 completed the study treatment. Here, we show that both strains lower Phe levels in participants with PKU: D5-Phe AUC0-24 was reduced by 43% from baseline with SYNB1934 and by 34% from baseline with SYNB1618. SYNB1934 led to a decrease in fasting plasma Phe of 40% (95% CI, -52, -24). There were no serious adverse events or infections. Four participants discontinued because of adverse events, and one withdrew during the baseline period. We show that synthetic biotics can metabolize Phe in the gut, lower post-prandial plasma Phe levels and lower fasting plasma Phe in patients with PKU.


Phenylalanine , Phenylketonurias , Adult , Humans , Male , Female , Phenylalanine/therapeutic use , Phenylketonurias/drug therapy , Phenylalanine Ammonia-Lyase/therapeutic use , Administration, Oral , Escherichia coli
18.
Mol Genet Metab ; 140(3): 107697, 2023 11.
Article En | MEDLINE | ID: mdl-37717412

Phenylketonuria (PKU) is an inborn error of metabolism caused by deficiency of phenylalanine hydroxylase, resulting in high blood phenylalanine (Phe) concentrations with potential for impaired neurocognition. Pegvaliase, a pegylated recombinant phenylalanine ammonia lyase that metabolizes Phe, is approved for use in adults with PKU and high blood Phe despite prior management. In the Phase 3 PRISM studies conducted in the United States, pegvaliase induction/titration/maintenance dosing led to clinically meaningful and statistically significant blood Phe reductions versus placebo, with a manageable safety profile. Here we report the primary endpoint, change in blood Phe levels from baseline to Week 52, and 2-year interim efficacy and safety results (to Week 144; data cut-off March 31, 2022) of an ongoing, open-label study in a Japanese PKU population (JapicCTI-194,642). Participants were 12 adults with PKU from Japan aged 18-70 years with blood Phe levels >600 µmol/L. In Part 1, participants received subcutaneous 2.5 mg pegvaliase once weekly for 4 weeks (induction), followed by titration up to 20 mg/day, then dose adjustment to a maximum 40 mg/day to achieve blood Phe efficacy (≤360 µmol/L); this maintenance dose was continued to Week 52. In Part 2, participants continued pegvaliase with dose adjustments up to a maximum 60 mg/day for up to 168 weeks. Among 11 participants evaluable for efficacy, mean (standard deviation) blood Phe concentration decreased from 1025.9 (172.7) µmol/L at baseline to 448.3 (458.8) µmol/L at Week 52 (mean 57.5% decrease). Up to Week 104, all 11 (100%) efficacy-evaluable participants achieved blood Phe levels ≤600 µmol/L, 9 (81.8%) achieved ≤360 µmol/L, and 8 (72.7%) achieved ≤120 µmol/L. All 12 participants reported ≥1 adverse event (AE), most commonly injection site erythema and injection site swelling (n = 10, 83.3% each). The pegvaliase exposure-adjusted AE rate was 23.5 per person-years overall, 41.2 per person-years during induction/titration, and 13.5 per person-years during maintenance. All participants developed pegvaliase-induced antibody responses. There were no AEs leading to discontinuation, no deaths, and no anaphylaxis events. Although interim, these results support the use of pegvaliase in Japanese adults with PKU with elevated blood Phe levels and are consistent with results from the Phase 3 PRISM studies.


Phenylalanine Ammonia-Lyase , Phenylketonurias , Adult , Humans , East Asian People , Phenylalanine , Phenylalanine Ammonia-Lyase/therapeutic use , Phenylketonurias/drug therapy , Recombinant Proteins/therapeutic use , Adolescent , Young Adult , Middle Aged , Aged
19.
Mol Genet Metab ; 140(3): 107684, 2023 11.
Article En | MEDLINE | ID: mdl-37672857

The main neurological, cognitive, and behavioural consequences of phenylketonuria have been eradicated thanks to new-born screening and Phe-restricted diet therapy. However, the effects of high phenylalanine levels during adolescence and adulthood on neurocognitive functions remain a concern. This systematic review aimed at collecting clinical data suggesting the safest metabolic target for early treated PKU during the second decade of life. Twenty studies met the inclusion criteria for full-text review. Relevant studies included papers that (a) examined the relationship between metabolic control and neurocognitive functions during adolescence or (b) investigated the impact of metabolic control in adolescence on adult outcomes. Most studies showed a positive correlation between metabolic control during adolescence and neurocognitive outcomes across ages. This was true both for IQ and executive functions, although data on executive functions were less clear, and it remains to be established whether they are more vulnerable to Phe than IQ. Taken together present evidence confirm brain vulnerability to Phe during adolescence and suggests that low average Phe levels and low Phe fluctuations should be maintained throughout life. While results are fully compatible with current European recommendations, clinical and methodological limitations coupled with remarkable interindividual variability prevented a clear identification of a safe threshold for Phe blood levels during adolescence.


Cognition , Phenylketonurias , Adult , Humans , Adolescent , Neuropsychological Tests , Executive Function , Brain , Phenylketonurias/drug therapy , Phenylalanine
20.
Nutrients ; 15(16)2023 Aug 17.
Article En | MEDLINE | ID: mdl-37630793

INTRODUCTION: In phenylketonuria (PKU) changes in dietary patterns and behaviors in sapropterin-responsive populations have not been widely reported. We aimed to assess changes in food quality, mental health and burden of care in a paediatric PKU sapropterin-responsive cohort. METHODS: In an observational, longitudinal study, patient questionnaires on food frequency, neophobia, anxiety and depression, impact on family and burden of care were applied at baseline, 3 and 6-months post successful sapropterin-responsiveness testing (defined as a 30% reduction in blood phenylalanine levels). RESULTS: 17 children (10.8 ± 4.2 years) completed 6-months follow-up. Patients body mass index (BMI) z-scores remained unchanged after sapropterin initiation. Blood phenylalanine was stable. Natural protein increased (p < 0.001) and protein substitute intake decreased (p = 0.002). There were increases in regular cow's milk (p = 0.001), meat/fish, eggs (p = 0.005), bread (p = 0.01) and pasta (p = 0.011) intakes but special low-protein foods intake decreased. Anxiety (p = 0.016) and depression (p = 0.022) decreased in caregivers. The impact-on-family, familial-social impact (p = 0.002) and personal strain (p = 0.001) lessened. After sapropterin, caregivers spent less time on PKU tasks, the majority ate meals outside the home more regularly and fewer caregivers had to deny food choices to their children. CONCLUSION: There were significant positive changes in food patterns, behaviors and burden of care in children with PKU and their families after 6-months on sapropterin treatment.


Diet , Phenylketonurias , Animals , Cattle , Female , Bread , Follow-Up Studies , Longitudinal Studies , Phenylketonurias/drug therapy
...